Postdan xaridgacha: influenser va ilg‘or veb-ilova (PWA – progressive web app)ning chakana sotuvga real ta’siri

Postdan xaridgacha: influenser va ilg‘or veb-ilova (PWA – progressive web app)ning chakana sotuvga real ta’siri

Authors

  • Abdulaziz Madjidov

DOI:

https://doi.org/10.5281/zenodo.17076010

Keywords:

influencer marketing, PWA, farqlar farqi (DiD-Difference-in-Differences), qat’iy effektlar (FE-Fixed Effects), chakana savdo, foydalanuvchi tajribasi (UX-User Experience), narx sezgirligi, zaxira boshqaruvi

Abstract

Ushbu tadqiqot chakana savdoda “postdan xaridgacha” bo‘lgan yo‘lni o‘rganib, influenser kampaniyasi
hamda ilg‘or veb-ilova (Progressive Web App -PWA) joriy etilishining ta’sirini empirik baholaydi. Kunlik panel ma’lumotlar
asosida mahsulot va vaqt kesimlaridagi qat’iy effektlarni hisobga oluvchi model qo‘llanildi; influenser ta’siri farqlar farqi
yondashuvi orqali identifikatsiya qilindi, standart xatolar vaqt bo‘yicha klasterlandi. Natijalar influencer postlari sotuvni
sezilarli oshirishini, PWA joriy etilishi esa foydalanuvchi tajribasini yaxshilash orqali savdoga ijobiy ta’sir ko‘rsatishini
ko‘rsatadi. Narx omili savdoga pasaytiruvchi ta’sirga ega ekani, omborda zaxira tugashi esa sotuvlarni keskin pasaytirishi
aniqlanadi. Model spetsifikatsiyasi bir qator diagnostik sinovlar va qoldiq grafiklari orqali tekshirilib, xulosalarning
barqarorligi tasdiqlandi. Amaliy jihatdan, influencer hamkorliklarini maqsadli mahsulotlar kesimida davom ettirish, PWA
hamda umumiy foydalanuvchi tajribasi (UX-User Experience) optimallashtirishni kuchaytirish va zaxira boshqaruvini
intizomli yo‘lga qo‘yish tavsiya etiladi. Cheklov sifatida, mahsulotlar soni va kuzatuv oynasining chegaralanganligi qayd
etiladi; kelgusida tahlilni kengroq o‘lcham va uzoqroq davr ma’lumotlari bilan boyitish rejalashtiriladi

Author Biography

Abdulaziz Madjidov


Magistr
O‘zsanoatqurilishbank Marketing departamenti direktori
 

References

1. Belanche, D., Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2021). Understanding influencer marketing: The role of

congruence between influencers, products and consumers. Journal of Business Research, 132, 186–195.

2. Bijmolt, T. H. A., van Heerde, H. J., & Pieters, R. G. M. (2005). New empirical generalizations on the determinants of

price elasticity. Journal of Marketing Research, 42(2), 141–156. https://doi.org/10.1509/jmkr.42.2.141.62296

3. Callaway, B., & Sant’Anna, P. H. C. (2021). Difference-in-differences with multiple time periods. Journal of Econometrics,

225(2), 200–230.

4. Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with clustered

errors. Review of Economics and Statistics, 90(3), 414–427.

5. Cameron, A. C., & Miller, D. L. (2015). A practitioner’s guide to cluster-robust inference. Journal of Human Resources,

50(2), 317–372.

6. Campo, K., Gijsbrechts, E., & Nisol, P. (2000). Towards understanding consumer response to stock-outs. Journal of

Retailing, 76(2), 219–242. https://doi.org/10.1016/S0022-4359(00)00026-9

7. De Veirman, M., Cauberghe, V., & Hudders, L. (2017). Marketing through Instagram influencers: The impact of number

of followers and product divergence on brand attitude. International Journal of Advertising, 36(5), 798–828. https://doi.

org/10.1080/02650487.2017.1348035

8. Deloitte. (2020). Milliseconds make millions: Why performance matters for retailers and brands. Deloitte Digital/Google.

9. Fitzsimons, G. J. (2000). Consumer response to stockouts. Journal of Consumer Research, 27(2), 249–266.

10. Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics,

225(2), 254–277.

11. Google Developers. (n.d.). AliExpress case study: Building a PWA for higher conversions. Retrieved from web.dev /

developers.google.com.

12. Lou, C., & Yuan, S. (2019). Influencer marketing: How message value and credibility affect consumer trust of branded

content on social media. Journal of Interactive Advertising, 19(1), 58–73.

13. Nerlove, M., & Arrow, K. J. (1962). Optimal advertising policy under dynamic conditions. Economica, 29(114), 129–142.

14. Pan, M., Li, W., Liu, S., & He, F. (2025). Influencer marketing effectiveness: A meta-analytic review. Journal of the

Academy of Marketing Science. https://doi.org/10.1007/s11747-024-01052-7

15. Sokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How influencer

credibility affects consumer purchase intention. Journal of Retailing and Consumer Services, 53, 101742

Downloads

Published

2025-09-01
Loading...