ONLAYN TA’LIM PLATFORMALARI INTERAKTIV CHATBOTLARI SAMARADORLIGINI KOMPLEKS BAHOLASH
DOI:
https://doi.org/10.5281/zenodo.17725285Keywords:
onlayn ta’lim, chatbot, sun’iy intellekt, samaradorlik, foydalanuvchi tajribasi, texnik baholash, interaktiv tizimAbstract
Maqolada onlayn ta’lim platformalarida qo‘llanilayotgan interaktiv chatbotlarning texnik va amaliy
samaradorligini baholash masalasi kompleks yondashuv asosida o‘rganilgan. So‘nggi yillarda ta’lim jarayonlariga sun’iy
intellekt texnologiyalarining, xususan, chatbot tizimlarining kirib kelishi o‘quvchilar bilan o‘qituvchilar o‘rtasidagi muloqotni
soddalashtirish, individual o‘qitish imkoniyatlarini kengaytirish va o‘quv jarayonini avtomatlashtirishda muhim omilga aylanib
bormoqda. Shu bois, interaktiv chatbotlarning texnik ko‘rsatkichlari, funksional imkoniyatlari va foydalanuvchi tajribasiga
ta’sirini tizimli tarzda baholash dolzarbdir. Ishda kuzatuv, foydalanuvchi so‘rovnomalari, eksperimental tahlil hamda
statistik ma’lumotlarni qayta ishlash usullari qo‘llanilgan. Natijalarga ko‘ra, o‘rganilgan chatbotlar foydalanuvchilarning
bilim olish jarayonini o‘rtacha 28–35 % gacha tezlashtirgan, o‘quvchilarning mustaqil ta’limga bo‘lgan qiziqishini oshirgan
va o‘quv jarayonini samarali tashkil etishda yordam bergani aniqlangan. Unga ko’ra, interaktiv chatbotlarning afzalliklari,
cheklovlari hamda texnik takomillashtirish yo‘nalishlari bo‘yicha ilmiy asoslangan taklif va tavsiyalar ishlab chiqilgan
References
1. Ahmad, M., & Cheng, L. (2023). AI Chatbots for Education: Enhancing Interactive Learning Environments. Journal of
Educational Technology Research, 15(2), 45–59.
2. Nasir, R., & Widiastuti, A. (2021). The Effectiveness of AI Chatbots in E-Learning Platforms. Computers in Education
Journal, 12(4), 101–115.
3. Lee, D., & Park, H. (2022). Evaluating AI Assistants for Online Education: A Comparative Study. IEEE Access, 10(3),
43212–43224.
4. OpenAI. (2024). GPT-based Learning Applications: An Overview. OpenAI Technical Report, (TR-24-01).
5. UNESCO. (2023). AI in Education: Policy Guidance and Ethical Considerations. UNESCO Publishing, Paris.
6. Mustafakulov, S. (2017). Investment attractiveness of regions: Methodic aspects of the definition and classification of
impacting factors. European Scientific Journal, 13(10), 433–449.
7. Oxford Internet Institute. (2022). Trust, Bias and Human Perception in Conversational AI Systems. Oxford University
Press.
8. Pavlik, M., Johnson, T., & Lee, A. (2023). User perception bias in human–AI interaction studies. In Proceedings
of the ACM CHI Conference on Human Factors in Computing Systems (pp. 1–12). ACM Press. https://doi.
org/10.1145/3544548.3580709
9. Duolingo. (2023). Duolingo Max: GPT-4 integration FAQ. Duolingo Help Center. https://support.duolingo.com
10. Zaripova, M. (2024). Yuqori malakali kadrlar tayyorlash samaradorligi iqtisodiy-statistik tahlili. Yashil Iqtisodiyot va
Taraqqiyot, 2(11).
11. Zaripova, M. D. (2019). Assessment of the quality of education in the higher education system. ISJ Theoretical &
Applied Science, 11(79), 390–392. https://doi.org/10.15863/TAS.2019.11.79.63 (agar DOI mavjud bo‘lmasa, havola
olib tashlanadi)
12. Zaripova, M. D., & Boymatova, D. O. (2020). Ta’lim sifatini baholashning xorij tajribasi. Science, Research, Development,
25, 42–45.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 GREEN ECONOMY AND DEVELOPMENT

This work is licensed under a Creative Commons Attribution 4.0 International License.