SUN’IY INTELLEKT ASOSIDAGI TALABNI PROGNOZLASHNING CHAKANA MARKETING INNOVATSIYASINI TAKOMILLASHTIRISHDAGI ROLI

SUN’IY INTELLEKT ASOSIDAGI TALABNI PROGNOZLASHNING CHAKANA MARKETING INNOVATSIYASINI TAKOMILLASHTIRISHDAGI ROLI

Authors

  • Gulsaraxon Ostonaqulova

DOI:

https://doi.org/10.5281/zenodo.18207497

Keywords:

AI quvvatlangan talab prognozi, chakana savdo marketingi, marketing innovatsiyalari, vaqt qatorlari tahlili, Analitik Ierarxiya Jarayoni (AHP), raqamli tayyorgarlik, personalizatsiya, segmentatsiya, prognoz aniqligi

Abstract

Chakana savdo bozorlari iste’molchilarning xulq-atvori va texnologik yangilanishlardagi transformatsiyalar
ta’sirida tezkor va dinamik o‘zgarishlarga duch kelmoqda. Ushbu sharoitda talab prognozlari menejment qarorlarini qabul
qilishda muhim analitik asos bo‘lib xizmat qiladi. Mazkur tadqiqotda sun’iy intellekt (AI) quvvatlangan talab prognozlash
yondashuvining, xususan vaqt qatorlari tahlili va Analitik Ierarxiya Jarayoni (AHP) integratsiyasi orqali, chakana savdo
marketingidagi innovatsiyalarga ta’siri raqamli transformatsiya kontekstida o‘rganiladi. Tadqiqotning asosiy maqsadi ilg‘or
prognozlash usullarining personalizatsiya, segmentatsiya va mijozlarni jalb qilish strategiyalariga qo‘shayotgan hissasini
statistik modellashtirish, juft solishtirish va ko‘p mezonli qaror qabul qilish usullari asosida baholashdan iborat. Natijalar
prognoz aniqligi va marketing innovatsiyalari samaradorligi raqamli tayyorgarlik darajasi bilan chambarchas bog‘liqligini
ko‘rsatadi.

Author Biography

Gulsaraxon Ostonaqulova

I.f.d., prof.
TDIU “Marketing” kafedrasi professori


References

1. Ajiga, D. I., et al. (2024). AI-driven predictive analytics in retail: A review of emerging trends and customer engagement

strategies. International Journal of Management & Entrepreneurship Research.

2. Amosu, O. R., et al. (2024). AI-driven demand forecasting: Enhancing inventory management and customer satisfaction.

World Journal of Advanced Research and Reviews.

3. Ankam, S. (2025). AI-Driven Demand Forecasting in Enterprise Retail Systems: Leveraging Predictive Analytics for

Enhanced Supply Chain. International Journal for Sciences and Technology.

4. Bonetti, F., et al. (2022). Practice co-evolution: Collaboratively embedding artificial intelligence in retail practices.

Journal of the Academy of Marketing Science.

5. Fathima, F., et al. (2024). Impact of AI-based predictive analytics on demand forecasting in ERP systems: A Systematic

Literature Review. International Conference on Soft Computing and Software Engineering.

6. Kumar, P., et al. (2024). AI-enhanced inventory and demand forecasting: Using AI to optimize inventory management

and predict customer demand. World Journal of Advanced Research and Reviews.

7. Kumar, V., et al. (2024). AI-powered marketing: What, where, and how? International Journal of Information

Management.

8. Ljepava, N. (2022). AI-Enabled Marketing Solutions in Marketing Decision Making: AI Application in Different Stages

of Marketing Process. TEM Journal.

9. Liu, B., et al. (2024). Intelligent productivity transformation: Corporate market demand forecasting with the aid of an AI

virtual assistant. Journal of Organizational and End User Computing.

10. Mitra, A., et al. (2022). A comparative study of demand forecasting models for a multi-channel retail company: A novel

hybrid machine learning approach. Operations Research Forum.

11. Nweje, U. (2025). Leveraging artificial intelligence for predictive supply chain management: Focus on how AI-driven

tools are revolutionizing demand forecasting and inventory optimization. International Journal of Science and Research

Archive.

12. Potwora, M., et al. (2024). The use of artificial intelligence in marketing strategies: Automation, personalization and

forecasting. Journal of Management World.

13. Salhab, H., et al. (2025). AI-Driven Sustainable Marketing in Gulf Cooperation Council Retail: Advancing SDGs

Through Smart Channels. Administrative Sciences.

14. Saha, P., et al. (2022). Demand forecasting of a multinational retail company using deep learning frameworks. IFACPapersOnLine.

15. Wang, Z. (2024). The influence of artificial intelligence on retail marketing. Advances in Economics, Management and

Political Sciences.

16. Zaman, K. (2022). Transformation of marketing decisions through artificial intelligence and digital marketing. Journal

of Marketing Strategies.

Downloads

Published

2026-01-01

How to Cite

Ostonaqulova , G. (2026). SUN’IY INTELLEKT ASOSIDAGI TALABNI PROGNOZLASHNING CHAKANA MARKETING INNOVATSIYASINI TAKOMILLASHTIRISHDAGI ROLI. GREEN ECONOMY AND DEVELOPMENT, 4(1). https://doi.org/10.5281/zenodo.18207497
Loading...