SUN’IY INTELLEKT ASOSIDAGI TALABNI PROGNOZLASHNING CHAKANA MARKETING INNOVATSIYASINI TAKOMILLASHTIRISHDAGI ROLI
DOI:
https://doi.org/10.5281/zenodo.18207497Keywords:
AI quvvatlangan talab prognozi, chakana savdo marketingi, marketing innovatsiyalari, vaqt qatorlari tahlili, Analitik Ierarxiya Jarayoni (AHP), raqamli tayyorgarlik, personalizatsiya, segmentatsiya, prognoz aniqligiAbstract
Chakana savdo bozorlari iste’molchilarning xulq-atvori va texnologik yangilanishlardagi transformatsiyalar
ta’sirida tezkor va dinamik o‘zgarishlarga duch kelmoqda. Ushbu sharoitda talab prognozlari menejment qarorlarini qabul
qilishda muhim analitik asos bo‘lib xizmat qiladi. Mazkur tadqiqotda sun’iy intellekt (AI) quvvatlangan talab prognozlash
yondashuvining, xususan vaqt qatorlari tahlili va Analitik Ierarxiya Jarayoni (AHP) integratsiyasi orqali, chakana savdo
marketingidagi innovatsiyalarga ta’siri raqamli transformatsiya kontekstida o‘rganiladi. Tadqiqotning asosiy maqsadi ilg‘or
prognozlash usullarining personalizatsiya, segmentatsiya va mijozlarni jalb qilish strategiyalariga qo‘shayotgan hissasini
statistik modellashtirish, juft solishtirish va ko‘p mezonli qaror qabul qilish usullari asosida baholashdan iborat. Natijalar
prognoz aniqligi va marketing innovatsiyalari samaradorligi raqamli tayyorgarlik darajasi bilan chambarchas bog‘liqligini
ko‘rsatadi.
References
1. Ajiga, D. I., et al. (2024). AI-driven predictive analytics in retail: A review of emerging trends and customer engagement
strategies. International Journal of Management & Entrepreneurship Research.
2. Amosu, O. R., et al. (2024). AI-driven demand forecasting: Enhancing inventory management and customer satisfaction.
World Journal of Advanced Research and Reviews.
3. Ankam, S. (2025). AI-Driven Demand Forecasting in Enterprise Retail Systems: Leveraging Predictive Analytics for
Enhanced Supply Chain. International Journal for Sciences and Technology.
4. Bonetti, F., et al. (2022). Practice co-evolution: Collaboratively embedding artificial intelligence in retail practices.
Journal of the Academy of Marketing Science.
5. Fathima, F., et al. (2024). Impact of AI-based predictive analytics on demand forecasting in ERP systems: A Systematic
Literature Review. International Conference on Soft Computing and Software Engineering.
6. Kumar, P., et al. (2024). AI-enhanced inventory and demand forecasting: Using AI to optimize inventory management
and predict customer demand. World Journal of Advanced Research and Reviews.
7. Kumar, V., et al. (2024). AI-powered marketing: What, where, and how? International Journal of Information
Management.
8. Ljepava, N. (2022). AI-Enabled Marketing Solutions in Marketing Decision Making: AI Application in Different Stages
of Marketing Process. TEM Journal.
9. Liu, B., et al. (2024). Intelligent productivity transformation: Corporate market demand forecasting with the aid of an AI
virtual assistant. Journal of Organizational and End User Computing.
10. Mitra, A., et al. (2022). A comparative study of demand forecasting models for a multi-channel retail company: A novel
hybrid machine learning approach. Operations Research Forum.
11. Nweje, U. (2025). Leveraging artificial intelligence for predictive supply chain management: Focus on how AI-driven
tools are revolutionizing demand forecasting and inventory optimization. International Journal of Science and Research
Archive.
12. Potwora, M., et al. (2024). The use of artificial intelligence in marketing strategies: Automation, personalization and
forecasting. Journal of Management World.
13. Salhab, H., et al. (2025). AI-Driven Sustainable Marketing in Gulf Cooperation Council Retail: Advancing SDGs
Through Smart Channels. Administrative Sciences.
14. Saha, P., et al. (2022). Demand forecasting of a multinational retail company using deep learning frameworks. IFACPapersOnLine.
15. Wang, Z. (2024). The influence of artificial intelligence on retail marketing. Advances in Economics, Management and
Political Sciences.
16. Zaman, K. (2022). Transformation of marketing decisions through artificial intelligence and digital marketing. Journal
of Marketing Strategies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 GREEN ECONOMY AND DEVELOPMENT

This work is licensed under a Creative Commons Attribution 4.0 International License.