Urban aglomeratsiyalar sharoitida yer osti inshootlariga ta’sir etuvchi geologik xavflarni kompleks baholash
DOI:
https://doi.org/10.5281/zenodo.15411101Keywords:
quyosh energiyasi, sanoat samaradorligi, qayta tiklanuvchi manbalar, iqtisodiy tahlil, energiya boshqaruvi, ekologik barqarorlik.Abstract
Maqolada sanoat korxonalarida quyosh energiyasidan foydalanish orqali iqtisodiy samaradorlikni oshirish
masalasi ilmiy asosda yoritilgan. Muallif ishlab chiqarish xarajatlarini kamaytirish, energiyadan samarali foydalanish va
ekologik barqarorlikni taʼminlashda quyosh energiyasining imkoniyatlarini tahlil qiladi. Shuningdek, energiya boshqaruvi
tizimlari, texnologik yangiliklar va investitsion mexanizmlar oʻzaro bogʻliq holda koʻrib chiqilgan. Xulosa va takliflar amaliy
jihatdan asoslangan yechimlarni taklif etadi.
References
Ngoma, S., Radonjic, M., Kalyoncu, A., & Alshibli, K. (2025). Geological risks of underground infrastructures in urban
heat islands. Environmental Research, 232, 117072. https://doi.org/10.1016/j.envres.2024.117072
Axéen, S. (2023). Assessment of subsurface deformations and risk under urban construction (Master’s thesis). Lund
University. https://lup.lub.lu.se/student-papers/search/publication/9147883
Krewski, D., et al. (2022). Decision-making principles for environmental health risk. Journal of Toxicology and
Environmental Health, Part B, 25(3), 101–124. https://doi.org/10.1080/10937404.2022.2038247
Barla, G., & Barla, M. (2016). TBM tunnelling in difficult ground conditions. Tunnelling and Underground Space
Technology, 57, 177–190. https://doi.org/10.1016/j.tust.2016.03.021
Nygren, J., et al. (2020). Urban groundwater dynamics and seasonal stress interactions. Journal of Hydrology, 588,
https://doi.org/10.1016/j.jhydrol.2020.125079
Lin, H., Wang, Y., & Zhou, Y. (2021). Three-dimensional risk zoning in coastal deltas using the HVE model. Journal of
Cleaner Production, 280, 124276. https://doi.org/10.1016/j.jclepro.2020.124276
Swain, K. C., Sahoo, S., & Mahapatra, A. (2020). Flood susceptibility mapping through the GIS-AHP technique. Spatial
Information Research, 28(5), 627–640. https://doi.org/10.1007/s41324-020-00318-2
Kim, D., & Park, H. (2021). Subsurface stress constraints in deep rock environments. Underground Space, 6(4), 293–
https://doi.org/10.1016/j.undsp.2020.08.003
Herrero, C., & Mateo, M. (2023). The contribution of urban geology to the development of sustainable cities. Science
of The Total Environment, 879, 162908. https://doi.org/10.1016/j.scitotenv.2023.162908
Liu, L., Zhang, Y., Chen, Y., et al. (2021). Urban subsidence monitoring by SBAS-InSAR technique in the Beijing Plain.
Remote Sensing, 13(12), 2342. https://doi.org/10.3390/rs13122342
Zhang, Q., Zhao, Y., & Li, Y. (2025). Urban resilience for urban sustainability: Concepts and evaluation. Sustainable
Cities and Society, 85, 104179. https://doi.org/10.1016/j.scs.2023.104179
Kazo, J. (2021). Risk assessment of long-distance water infrastructure. Journal of Infrastructure Systems, 27(3),
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000625
Zhang, Y., Liu, Q., Wang, X., & Chen, H. (2025). Deep learning-based risk modeling for urban geological stability:
A case study of Xuzhou. Computers, Environment and Urban Systems, 95, 101845. https://doi.org/10.1016/j.
compenvurbsys.2023.101845
Downloads
Published
Issue
Section
License
Copyright (c) 2025 YASHIL IQTISODIYOT VA TARAQQIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.