Global energiya noaniqligining o‘zgaruvchanligi ekonomertik modellari
DOI:
https://doi.org/10.5281/zenodo.15493771Keywords:
energetika sohasi, globallashuv, o‘zgaruvchanlik, energiya noaniqligi, ekonometrik modellarAbstract
Energiya bozorlaridagi tebranishlar butun iqtisodiy faoliyatga sezilarli ta’sir ko‘rsatadi. Ushbu tadqiqot 1996–
2021–yillar oralig‘idagi ma’lumotlar asosida EUI ko‘rsatkichlaridan foydalangan holda global energiya noaniqligini ARCH
va GARCH modellari yordamida tahlil qiladi. Olingan natijalar global energiya noaniqligi yuqori darajada ekanini tasdiqlaydi
(koeffitsiyent 0,63). Siyosiy tavsiya sifatida, qayta tiklanuvchi energiya manbalarini rivojlantirish taklif etiladi, chunki bunday
manbalar energiyaga qaramlikni kamaytiradi va noaniqlik darajasini pasaytiradi. Bu yo‘nalish BMTning SDG7 — Barqaror
energiya maqsadlari bilan hamohang bo‘lib, global miqyosda barqaror energetika siyosatini shakllantirishga xizmat qiladi
References
Kanamura T. A supply and demandbased volatility model for energy prices. Energy Econ 2009;31(5):736-47.
Banna H, Alam A, Chen XH, Alam AW. Energy security and economic stability: the role of inflation and war. Energy
Econ 2023; 126:106949.
Is¸ ık C, et al. Renewable energy, economic freedom and economic policy uncertainty: new evidence from a dynamic
panel threshold analysis for the G-7 and BRIC countries. Stoch Environ Res Risk Assess 2023:1–16.
Olanipekun IO, et al. Is renewable energy use lowering resource-related uncertainties? Energy 2023. https://doi.
org/10.1016/j.energy.2023.126949.
Balcilar M, Roubaud D, Shahbazb M. The impact of energy market uncertainty shocks on energy transition in Europe.
Energy J 2019;40(1_suppl):55–80. https:// doi.org/10.5547/01956574.40.SI1.mbal.
Hong T, et al. Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. Int J Forecast
; 32:896–913. https://doi.org/ 10.1016/j.ijforecast.2016.02.001.
Engle RF. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation.
Econometrica 1982;50(4):987–1007.
Engle RF. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation.
Econometrica 1982;50(4):987–1007.
Box G, Jenkins G. Time series analysis: forecasting and control. San Francisco: Holden-Day; 1970.
Breusch TS, Pagan AR. A simple test for heteroskedasticity and random coefficient variation. Econometrica 1979;
:1287–94.
Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc
; 74:427–31.
Phillips PCB, Perron P. Testing for a unit root in time series regression. J Biometrika 1998;75:335–46.
Kwiatkowski D, et al. Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we
that economic time series have a unit root? J Econom 1992; 54:159–78.
Burnham KP, Anderson DR. Model selection and inference a practical information- theoretic approach. Springer; 1998.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 YASHIL IQTISODIYOT VA TARAQQIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.