O‘ZBEKISTONDA SUVGA BO‘LGAN TALABNI VAQTLI QATORLAR ORQALI TAHLIL QILISH

O‘ZBEKISTONDA SUVGA BO‘LGAN TALABNI VAQTLI QATORLAR ORQALI TAHLIL QILISH

##article.authors##

  • Sarvar Mamasoliyev

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.5281/zenodo.17551296

##article.subject##:

suv sarfi, ARIMA, ACF, PACF, anomaliya, suv menejmenti

##article.abstract##

Global darajada suv tanqisligi kuzatilayotgan bir davrda mamlakat iqtisodiyotida aholi salomatligi va oziqovqat
xavfsizligini ta’minlovchi islohotlarni rejalashtirish uchun suvga bo‘lgan talabni prognoz qilish dolzarb masala
hisoblanadi. Ushbu maqolada O‘zbekiston Respublikasida barcha tarmoqlardagi suv sarfi hajmi ekonometrik vaqt
qatori tahlili orqali prognoz qilinadi. Eng maqbul model sifatida ARIMA(0,2,1) qabul qilindi. Natijalar shuni ko‘rsatdiki,
respublikada 2030-yilga kelib aholi suv iste’moli hajmi 0,9 foizga kamayishi, qishloq xo‘jaligi suv iste’moli 1,2 foizga,
sanoat suv iste’moli esa 4 foizga yetishi prognoz qilinmoqda.

Биография автора

Sarvar Mamasoliyev


Toshkent davlat iqtisodiyot universiteti
doktoranti, Tashkent, Uzbekistan
 

Библиографические ссылки

1. Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water

demand. Journal of Hydrology, 387(1–2), 141–150. https://doi.org/10.1016/j.jhydrol.2010.04.005

2. Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2014). Urban water demand forecasting: Review

of methods and models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.

org/10.1061/(ASCE)WR.1943-5452.0000314

3. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.

4. Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socioeconomic

and climatic changes. Hydrological Sciences Journal, 52(2), 247–275.

5. Kundzewicz, Z. W., & Stakhiv, E. Z. (2010). Are climate models “ready for prime time” in water resources management

applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085–1089.

6. Pahl-Wostl, C. (2007). Transitions towards adaptive management of water facing climate and global change. Water

Resources Management, 21(1), 49–62.

7. Gato, S., Jayasuriya, N., & Roberts, P. (2007). Temperature and rainfall thresholds for base use urban water demand

modelling. Journal of Hydrology, 337(3–4), 364–376.

8. Zhou, S. L., McMahon, T. A., Walton, A., & Lewis, J. (2000). Forecasting daily urban water demand: A case study of

Melbourne. Journal of Hydrology, 236(3–4), 153–164.

9. Pagano, T. C., Garen, D. C., & Sorooshian, S. (2004). Evaluation of official western U.S. seasonal water supply

outlooks, 1922–2002. Journal of Hydrometeorology, 5(5), 896–909.

10. Clark, M. P., & Hay, L. E. (2004). Use of medium-range weather forecasts to produce predictions of streamflow. Journal

of Hydrometeorology, 5(1), 15–32.

11. House-Peters, L. A., & Chang, H. (2011). Urban water demand modeling: Review of concepts, methods, and organizing

principles. Water Resources Research, 47(5), W05401.

12. Shamir, E., & Georgakakos, K. P. (2014). Distributed snow accumulation and ablation modeling in the American River

basin. Advances in Water Resources, 68, 123–140.

13. Donkor, E. A., Mazzuchi, T. A., Soyer, R., & Roberson, J. A. (2014). Urban water demand forecasting: Review of methods

and models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.org/10.1061/(ASCE)

WR.1943-5452.0000314

14. Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water

demand. Journal of Hydrology, 387(1–2), 141–150. https://doi.org/10.1016/j.jhydrol.2010.04.005

15. Zhou, S. L., McMahon, T. A., Walton, A., & Lewis, J. (2000). Forecasting daily urban water demand: A case study of

Melbourne. Journal of Hydrology, 236(3–4), 153–164. https://doi.org/10.1016/S0022-1694(00)00287-0

16. Adamowski, J., & Karapataki, C. (2010). Comparison of multivariate regression and artificial neural networks for peak

urban water-demand forecasting: Evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering,

15(10), 729–743. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245

17. Brentan, B. M., Luvizotto, E. Jr., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for

near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532–541.

https://doi.org/10.1016/j.cam.2016.06.019

18. Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2008). Water demand prediction using artificial neural networks and

support vector regression. Journal of Computers, 3(11), 1–8.

Загрузки

##submissions.published##

2025-11-01
Loading...