Biosignallarni qayta ishlashda su`niy intellektga asoslangan bashoratlash

Biosignallarni qayta ishlashda su`niy intellektga asoslangan bashoratlash

##article.authors##

  • Qarshiyeva Jamila Yashnar qizi

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.5281/zenodo.17606493

##article.subject##:

biosignallar, sun’iy intellekt, bashoratlash, LSTM, EKG, EEG, signalni qayta ishlash

##article.abstract##

Ushbu maqolada biosignallarni qayta ishlashda sun’iy intellekt modellari yordamida sog‘liq holatini bashorat
qilish masalasi yoritilgan. Tadqiqotda LSTM, ANN va SVM modellarining samaradorligi solishtirilgan. LSTM modelining
yuqori aniqlikdagi natijalari ko‘rsatib o‘tilgan. Tadqiqotda signalni tozalash va xususiyatlarni ajratib olishning model
natijasiga ta’siri ko‘rib chiqilgan. Maqola tibbiyot va texnologiya sohalarida biosignallarga asoslangan monitoring tizimlari
uchun amaliy ahamiyatga ega. Muallif model tanlashda statistik yondashuvlarga asoslangan. Ilmiy yangiligi biosignallarni
chuqur o‘rganishda zamonaviy neyron tarmoqlaridan samarali foydalanishda namoyon bo‘ladi

Биография автора

Qarshiyeva Jamila Yashnar qizi

Osiyo texnologiyalar universiteti
o‘qituvchi

Библиографические ссылки

1. Qarshiyeva, J. Y. (2023). MATLAB TIZIMIDA SIGNALLARNI APPROKSIMATSIYALASH. GOLDEN BRAIN, 1(28), 191-195.

2. qizi Qarshiyeva, J. Y. (2023). MATLAB TIZIMIDA SIGNALLARNI INTERPOLYATSIYALASH MASALALARINI

YECHISH. GOLDEN BRAIN, 1(28), 186-190.

3. КАРШИЕВА, Д. (2022). К ВОПРОСУ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ В ИНТЕЛЛЕКТУАЛЬНЫХ СЕНСОРАХ.

In Молодежь и системная модернизация страны (pp. 364-367).

4. Элов, Д. Б. (2023). БАЛАНСИРОВКА ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ДАТЧИКОВ В БЕСПРОВОДНЫХ

СЕНСОРНЫХ СЕТЯХ: BALANCING THE ENERGY CHARACTERISTICS OF SENSORS IN WIRELESS SENSOR

NETWORKS. Молодой специалист, 2(10), 29-33.

5. Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible

for water quality degradation: A review. Water, 13(19), 2660-2670.

6. Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: a

review. Journal of Neural Engineering, 16(3), 031001.

7. Kiranyaz, S., Ince, T., & Gabbouj, M. (2016). Real-time patient-specific ECG classification by 1-D convolutional neural

networks. IEEE Transactions on Biomedical Engineering, 63(3), 664-675.

8. Chakraborty, S., Mitra, M., & Ray, A. K. (2020). Preprocessing techniques for EKG signal analysis: A comparative study.

Biomedical Signal Processing and Control, 57, 101702.

Загрузки

##submissions.published##

2025-07-01
Loading...